Credit Cards, the Demand for Money, and Monetary Aggregation*

Jinan Liu and Apostolos Serletis†
Department of Economics
University of Calgary
Calgary, AB T2N 1N4
Canada

Forthcoming in: Macroeconomic Dynamics
April 26, 2021

We use nonparametric and parametric demand analysis to empirically estimate a credit card-augmented monetary asset demand system, based on the Minflex Laurent flexible functional form, and a sample period that includes the 2007-2009 global financial crisis and the Covid-19 pandemic. We also use multivariate copulae in an attempt to capture various patterns of dependence structures. In doing so, we relax the joint normality assumption of the errors of the demand system and estimate the model without having to delete one equation as is usually the practice. We show that the Minflex Laurent copula-based demand system produces a higher income elasticity for credit card transaction services and higher Morishima elasticities between credit card transaction services and monetary assets compared to the traditional estimation of the Minflex Laurent demand system. We also show that credit cards are substitutes for monetary assets and that there is lower tail dependence between the demand for credit card transaction services and transaction balances.

JEL classification: C22; F33.

*This paper is based on Chapter 4 of Jinan Liu’s Ph.D. thesis at the University of Calgary. We would like to thank William Barnett, an Associate Editor, three anonymous referees, and Libo Xu for useful comments that greatly improved the paper. We would also like to thank the following members of Jinan’s dissertation committee: Daniel Gordon, David Walls, and Atsuko Tanaka.

†Corresponding author. Phone: (403) 220-4092; Fax: (403) 282-5262; E-mail: Serletis@ucalgary.ca; Web: http://econ.ucalgary.ca/profiles/162-33618
Keywords: Credit card-augmented Divisia monetary aggregates; Minflex Laurent functional form; Copulae.
1 Introduction

Background. According to the 2019 Diary of Consumer Payment Choice, cash, credit cards, and debit cards have consistently made up approximately 95% of the overall payment preferences, with the growth rate of the preference for credit cards surpassing those for cash and other methods of payment. Indeed, the credit card is a leading payment method among all noncash payment methods in terms of both the number of transactions and total payment value. As shown in Figure 1, the use of credit card transaction services, increasing at 8% per year, has led the growth in the number of payments among noncash payment methods, and constituted more than 40% of the total number of the noncash transactions by 2018 (see the Federal Reserve Payments Study: 2019 Annual Supplement). Figure 2 shows that the total payment value of credit card transactions has grown steadily since the financial crisis of 2007-2009, with an annual growth rate of 10%.

Despite the widespread use of credit cards, credit card transaction services have only recently been included in monetary aggregates, because of accounting conventions, which do not permit adding liabilities, such as credit card balances, to assets, such as currency and demand deposits. However, Barnett et al. (2016) use economic aggregation theory and statistical index number theory to explicitly measure the service flows from credit card transactions and money and produce a new definitions of the money supply, the credit card-augmented Divisia monetary aggregates, currently available at the Center for Financial Stability (CFS). In Figures 3 and 4, we highlight the differences between the simple sum monetary aggregate (Sum M1), the conventional Divisia monetary aggregate (Divisia M1), and the credit card-augmented Divisia monetary aggregate (Divisia M1A) at the M1 level of monetary aggregation. As can be seen from Figures 3 and 4, the differences between the credit card-augmented Divisia M1A aggregate and the Sum M1 and conventional Divisia M1 aggregates are more pronounced during the Covid-19 crisis.

By including the joint (liquidity and transactions) services of credit cards and monetary assets, the new credit card-augmented CFS Divisia monetary aggregates seem conceptually more relevant to macroeconomic research as measures of monetary services in the economy, and can shed some light on the Barnett critique — the measurement problems associated with the failure to find significant relations between money and key macroeconomic variables. In this regard, Liu et al. (2020) use cyclical correlation analysis and Granger causality tests and find that during, and in the aftermath of the 2007-2009 global financial crisis, the credit card-augmented Divisia measures of money are more informative when predicting real economic activity than the conventional (CFS) Divisia monetary aggregates. Also, Liu and Serletis (2020) conclude that the balance sheet targeting monetary policies after the global financial crisis should pay more attention on the broad credit card-augmented Divisia aggregates to address economic and financial stability.

Contribution. The main objective of this paper is to study the demand for credit card transaction services and the liquidity services of traditional monetary assets (transactions
balances and checkable deposits) over a sample period that includes the 2007-2009 global financial crisis and the Covid-19 pandemic. Since the credit card-augmented monetary aggregates are relatively new, no attempt has been made to systematically empirically investigate the substitutability/complementarity relationship between credit card transaction services and monetary assets. In this regard, Duca and Whitesell (1995) provide cross-sectional evidence that credit card ownership is associated with lower holdings of monetary transactions balances and Barnett et al. (2016, p. 2) conjecture that “credit card services are a substitute for the services of monetary transactions balances, perhaps to a much higher degree than the services of many of the assets included in traditional monetary aggregates.” Barnett and Su (2019) and Barnett and Liu (2019) use the CAPM and CCAPM, respectively, to study how to include credit card transaction services into liquidity measures under risk. This is the first paper to use the microeconomics approach to empirically estimate the demand system of the credit card-augmented monetary aggregates and thus substantiate the microeconomic foundations of the credit card augmented monetary aggregates.

We employ both ‘nonparametric’ and ‘parametric’ approaches to demand analysis. The nonparametric approach, fully developed by Varian (1982, 1983), deals with the raw data itself using techniques of finite mathematics. The parametric approach follows the innovative works by Diewert (1974), Donovan (1978), and Barnett (1978, 1980, 1983) and utilizes the flexible functional forms approach to investigating the inter-related problems of estimation of monetary asset demand functions and monetary aggregation. Our approach allows the estimation of a monetary asset demand system, augmented with credit card transactions services, based on the effectively globally regular Minfex Laurent flexible functional form, introduced by Barnett (1983) and Barnett and Lee (1985). We treat the concavity property as a maintained hypothesis to produce inference consistent with theoretical regularity.

A feature of all of the existing monetary asset demand studies is that they assume joint multivariate normality of the errors in the estimation of the demand system. See, for example, Ewis and Fisher (1984), Serletis and Robb (1986), Serletis (1988, 1991), Fisher and Fleissig (1997), Fleissig and Swofford (1997), Serletis and Shahmoradi (2005, 2007), and Jadidzadeh and Serletis (2019), among others. In this paper, we relax the joint normality assumption in the estimation of the Minfex Laurent flexible demand system by using the vine copula approach. The vine copula approach does not require a strictly-defined covariance matrix, and it allows the demand system errors to be from different families of distributions. By doing so, we are able to capture the various nonlinear dependence structures as well as tail dependence between the credit card transaction services and the monetary assets. Copulae have been widely used in the financial literature — see, for example, Patton (2006), Jondeau and Rockinger (2006), Rodriguez (2007), and Ning (2010) — and have been first introduced to the demand systems literature by Velasquez-Giraldo et al. (2018) and more recently by Serletis and Xu (2021).

We show that the copula-based Minfex Laurent demand system provides a better fit to the data than when the model is estimated under the joint multivariate normality assump-
We find that credit card transaction services are substitutes for traditional monetary assets and there is lower tail dependence between the demand for credit card transaction services and transaction balances, as well as lower tail dependence between the demand for transaction balances and OCDs, meaning that during bad times, the dependencies between those pairs of monetary services are stronger. We find that most of the elasticities of substitution exhibit large swings during the global financial crisis of 2007-2009 and the Covid-19 pandemic. We also find the Minflex Laurent model, when estimated under the joint multivariate normality assumption, tends to underestimate the income elasticity of credit card transaction services, as well as the Morishima elasticities of substitution between credit card transaction services and monetary assets.

From the perspective of monetary policy, the substitutability between credit card transaction services and monetary assets we found in this paper provides evidence of the necessity to use the Divisia method of aggregation to include credit card transaction services into monetary aggregates. The current simple sum approach to monetary aggregation used by the Federal Reserve cannot include credit card transaction services into monetary aggregates due to accounting conventions. Moreover, the simple sum approach requires that the monetary aggregate components are perfect substitutes for each other and the elasticities of substitution between each other to be very high (perhaps infinite). The moderate elasticities of substitution we find between credit card transaction services and monetary assets provide empirical evidence of the superiority of the Divisia monetary aggregation method over the simple sum monetary aggregation method. We also find that the Morishima elasticity of substitution between transactions balances and credit card transaction services has remained relatively stable during the Covid-19 pandemic, but that most of the other Morishima elasticities of substitution declined during the pandemic, indicating that the asset demand functions have become more stable and predictable, enhancing the Fed’s ability to target key monetary aggregates.

Layout. The structure of the paper is as follows. Section 2 discusses the microeconomic foundations of the traditional Divisia monetary aggregates and the new credit card-augmented Divisia monetary aggregates. Section 3 presents the neoclassical monetary problem and Section 4 discusses the data. In Section 5, we use the nonparametric techniques of revealed preference analysis to test for consistency with preference maximization and the existence of consistent new credit card-augmented Divisia monetary aggregates. Section 6 presents the Minflex Laurent flexible functional form and the demand system. Section 7 discusses estimation issues and motivates the use of the copula method in the estimation of demand systems. In Section 8, we present the estimation results. Section 9 discusses the income and price elasticities and addresses the substitutability relationship between credit card transaction services and traditional monetary assets. Section 10 investigates the dynamics of the demand monetary services during the Covid-19 pandemic in terms of the time-varying Morishima elasticities of substitution. The final section concludes the paper.
2 Monetary Aggregation Issues

2.1 Simple-Sum Aggregates

Central banks around the world use the simple-sum index to construct monetary aggregates, as follows

\[M = \sum_{i=1}^{n} m_i^a \]

where \(M \) is the monetary aggregate and \(m_i^a \) is one of the \(n \) monetary assets of the monetary aggregate, \(M \). Currently, the Federal Reserve constructs two monetary aggregates: the narrow Sum M1 and broad Sum M2 aggregates.

Although the simple-sum index has considerable advantages as an accounting measure of the stock of nominal monetary wealth, it has severe problems as a monetary aggregate index to track the liquidity services in the economy. Simple-summation monetary aggregation implies that all monetary components are perfect substitutes, and thus are equally weighted in the final liquidity measure. Simple-summation monetary aggregation cannot distinguish the changes in monetary service flow and the pure substitution between monetary components. In this regard, Fisher (1922) found the simple-sum index to be the worst known index number formula. The index number formula that Fisher found to be the best is the Fisher ideal index. Another attractive alternative to the simple-sum index is the (Tornqvist) discrete time approximation to the continuous Divisia index.

2.2 Divisia Aggregates

Over the years, Barnett (1978, 1980, 2016) argued that the simple-sum monetary aggregates are consistent with economic aggregation theory only if the monetary assets are perfect substitutes with the same user cost. However, monetary assets yield interest while currency does not. Thus, the assumption that the simple-sum monetary aggregates are based on is unreasonable. The Divisia monetary aggregates do not assume the perfect substitution between component assets, and hence permit different user costs of the component assets.

Because monetary assets are durable goods that do not perish during the period from use, their prices are their user costs. The formula for the real user cost of a monetary asset \(i \), \(p_{it}^a \) (the superscript \(a \) is used to denote monetary assets), derived by Barnett (1978), can be written as

\[p_{it}^a = \frac{R_t - r_{it}^a}{1 + R_t} \]

where \(R_t \) is the benchmark asset rate of return, and \(r_{it}^a \) is the own rate of return on monetary asset \(i \) during period \(t \). The benchmark asset is defined to provide no services other than its expected yield, \(R_t \), which motivates holding of the asset solely as a means of accumulating wealth. According to Barnett et al. (2013), the benchmark rate is the theoretical rate.
of return on pure capital producing no liquidity services other than investment yield, and
the benchmark rate should not be less than the yield on any monetary assets that provide
monetary services. It is approximated as the upper envelope over the own rates of return on
the components of the broadest monetary aggregate, M4. The user cost of monetary asset
p^a_{it} can also be interpreted as the opportunity cost of holding a dollar’s worth of the m^a_{it}
asset.

With the user cost and quantity data, the expenditure share on monetary asset i is

$$s^a_{it} = \frac{p^a_{it}m^a_{it}}{\sum_{i=1}^{I} p^a_{it}m^a_{it}},$$

(2)

where m^a_{it} denotes the real balances of monetary asset i during period t. A Divisia monetary
aggregate computes the growth rate of the aggregate as the share-weighted average of its
monetary asset component growth rates as follows

$$d \log M_t = \sum_{i=1}^{I} s^a_{it}d \log m^a_{it}.$$

(3)

Barnett (1978, 1980) demonstrated that the Divisia monetary aggregates represent a su-
perior measurement of liquidity services compared to the simple-sum monetary aggregates.
As a result, all the modern formal investigations of the impact of money on economic activ-
ities are carried out using the Divisia monetary aggregates, such as Belongia (1996), Serletis
and Gogas (2014), Hendrickson (2013), Keating et al. (2019), Dai and Serletis (2019), Liu
et al. (2020), and Dery and Serletis (2021), among others. All these works show that the
Divisia monetary aggregates are superior to the simple-sum monetary aggregates in tracking
liquidity services and have stronger explanatory power to economic activities. Moreover, Ja-
didzadeh and Serletis (2019) provide evidence that supports and reinforces Barnett’s (2016)
assertion that we should use, as a measure of money, the broadest Divisia M4 monetary
aggregate, as opposed to narrower aggregates such as Divisia M1 or Divisia M2. All these
studies emphasize that the choice of proper monetary measure matters in inference.

2.3 Credit Card-Augmented Divisia Aggregates

The volume of credit card transaction services has more than doubled in the past decade.
Over 80% of American households with credit cards are currently borrowing and paying
interest on credit cards (Barnett and Su (2019)). The simple-sum monetary aggregates are
not able to include credit card transaction services due to accounting conventions. However,
the Divisia monetary aggregates measure flows of services and are not based on account-
ing conventions. Using index number theory, the transaction services of credit cards and
monetary assets can be aggregated jointly.
Barnett et al. (2016) derive the credit card-augmented Divisia monetary aggregates. Under the assumption of risk neutrality, they derive the user cost of credit card transaction services, p_{ct}, as

$$p_{ct} = \frac{e_{ct} - R_t}{1 + R_t}$$

where e_{ct} is the expected interest on the credit card transaction l and R_t is, as before, the rate of return on the benchmark asset. The credit card-augmented Divisia monetary aggregate is then computed (in growth rate form) as

$$d \log M_t = \sum_{i=1}^{I} s_{ai}^{a} d \log m_{ai}^{a} + \sum_{l=1}^{L} s_{cl}^{c} d \log m_{cl}^{c}$$

(5)

where

$$s_{ai}^{a} = \frac{p_{ai}^{a} m_{ai}^{a}}{\sum_{i=1}^{I} p_{ai}^{a} m_{ai}^{a} + \sum_{l=1}^{L} p_{cl}^{c} m_{cl}^{c}}$$

is the user-cost-evaluated expenditure share of monetary asset, m_{ai}^{a}, and

$$s_{cl}^{c} = \frac{p_{cl}^{c} m_{cl}^{c}}{\sum_{i=1}^{I} p_{ai}^{a} m_{ai}^{a} + \sum_{l=1}^{L} p_{cl}^{c} m_{cl}^{c}}$$

is the user-cost-evaluated expenditure share of credit card transaction services, m_{cl}^{c}. It is to be noted that m_{cl}^{c} is the credit card transaction volume (and not the credit card transaction balances) in period t, reflecting the liquidity services provided by credit card transaction services — see Barnett et al. (2016) for a more detailed discussion. Also, comparing equation (5) to equation (3), we see that the credit card-augmented Divisia monetary aggregate has an extra term, $\sum_{l=1}^{L} s_{cl}^{c} d \log m_{cl}^{c}$, to capture the liquidity services provided by credit card transaction services.

The interest rate and risk on credit cards transactions are high and volatile. Barnett and Su (2019) and Barnett and Liu (2019) extend the theoretical credit card-augmented Divisia monetary aggregates under uncertainty, and more recently Barnett et al. (2019) further extend the existing theory of monetary services aggregation under risk to decisions under Knightian uncertainty. The credit card user cost under risk with intertemporal nonseparability is still ongoing research. The credit card augmented Divisia monetary aggregates supplied by the CFS program Advances in Monetary and Financial Measurement (AMFM) are based on the assumption of risk neutrality as derived by Barnett et al. (2016).

According to Barnett et al. (2016), e_{ct} in equation (4) is the interest rate averaged over both those consumers who maintain rotating balances, and hence pay interest on contemporaneous credit card transactions (volumes), and also those consumers who pay off such credit card transactions balances before the end of the period, and hence do not pay explicit interest on the credit card transactions. According to Barnett et al. (2016), more than 80%
of the American credit card holders pay interest on credit card transaction services, and the interest rate is as high as 25\% percent. For consumers with high rewards and no interest, it is beneficial to transfer their spending to credit cards and only pay their balances before the end of the interest-free period (convenience users). For those consumers who have revolving outstanding balances, it would be best to not use their cards at all, as they accrue interest charges immediately; and it would be best to pay down the credit card debt as the interest rates on bank accounts are much lower. Telyukova and Wright (2008) call such coexistence of debit and credit as the “credit card debt puzzle,” and their hypothesis is simply that households need to have money or some liquid assets readily available for contingencies where it may be difficult or costly to use credit.

3 The Neoclassical Monetary Problem

We assume that the representative agent’s utility function is

$$U = u(c, \ell, x)$$

where c is a vector of the services of consumption goods, ℓ is leisure time, and x is a vector of the services of conventional monetary assets and credit cards, included in the broadest CFS credit card-augmented Divisia monetary aggregate, Divisia M4A, and described in Table 1. We assume that the agent faces the following maximization problem

$$\max_{\{c, \ell, x\}} u(c, \ell, x) \quad \text{subject to} \quad q'c + w\ell + p'x = I$$

where q' is a vector of the prices of the consumption goods, w is the price of leisure time (assumed to be the wage rate), and I is the expenditure on the services of consumption goods, leisure, and monetary services.

It is to be noted that our budget constraint does not include credit constraints, since we are assuming interior solutions. If credit limits are binding, then there is a corner solution. It is normal to assume interior solutions for the representative consumer, aggregated over all consumers. It would be necessary to extend the theory to include credit constraints, if applied to a smaller group of consumers, such as low-income consumers who might borrow up to their credit limits.

4 The Data

Two sets of data are used in our analysis. We use the total personal consumption expenditures (PCE) series and the corresponding (chain-type) price index (PCEPI) from the Federal Reserve Bank of St. Louis FRED data base. According to the Bureau of Economic Analysis,
PCE is a measure of imputed household expenditures, and although PCE contains services such as owner-occupied housing, for which payment never really happens, it is the most commonly used series to capture households’ expenditure. We also use the total private average weekly hours of production and nonsupervisory employees (AWHNONAG) series and the corresponding average hourly earnings (AHEPI) series from FRED.

Regarding the data on monetary asset and credit card services, and their user costs, we use the recently produced data for the United States by Barnett et al. (2016), and maintained within the CFS program Advances in Monetary and Financial Measurement (AMFM), as shown in Table 1. It is to be noted that we are aggregating over consumers, including consumers who default and consumers who pay on time and hence pay no interest on their credit cards. The interest rate we are using is not the higher interest rate paid only by those consumers who are paying interest. We are using the interest rate data on the average interest collected by the credit card issuers. That interest rate is averaged over all kinds of consumers, including those who pay on time and hence pay no interest. It is lower than the interest paid only by those consumers who do pay interest on their credit cards. For a detailed discussion of the CFS data and the methodology for the calculation of user costs, see Barnett et al. (2016) and http://www.centerforfinancialstability.org.

Since currency, traveler’s checks, and demand deposits have the same user cost, we use simple summation to get the transactions balances subaggregate, \(x_1 \). Because OCDs at commercial banks and OCDs at thrift institutions have similar user costs, we use simple summation to get the OCDs subaggregate, \(x_2 \), and average the user costs of OCDs at commercial banks and OCDs at thrift institutions to get the user cost of the \(x_2 \) subaggregate, \(p_2 \). Note that \(x_3 \) is the real expenditure with credit card transactions during a month. In the jargon of the credit card industry, those contemporaneous expenditures are called “volumes.” That is, \(x_3 \) is not the rotating real balances which contains transactions in previous periods. Constructing these subaggregates from the original monetary components enables us to reduce the dimension of the system.

Although the data on monetary asset quantities and user costs is available since 1967, the user cost of the credit card transaction services is available since 2006:7. Thus, our sample period is from 2006:7 to 2020:8 (a total of 170 monthly observations), and includes the extreme economic events of the 2007-2009 financial crisis and the 2020 Covid-19 crisis. Finally, as we require real per capita quantities for the empirical work, we divide each quantity series by the CPI (all items) and total population, both series obtained from the FRED data base. We also multiply the real user costs by the CPI to get nominal user costs.

In Figure 5 we show the income normalized user costs of transaction balances, OCDs, and credit card transaction services. As can be seen, the user costs of transaction balances and OCDs are very close, and are much higher than that of the credit card transaction services.
5 Revealed Preference Analysis

Revealed preference methods can be applied prior to parametric demand analysis as a means of verifying whether the data can be rationalized by a well-behaved utility function — see Barnhart and Whitney (1988) and Fisher and Fleissig (1997). In this section, we deal with the utility relation expressed in the direct form (6), and use the nonparametric approach to demand analysis, developed by Varian (1982, 1983). This approach deals with the raw data itself, consisting of observed prices and quantities for a set of consumer goods, using techniques of finite mathematics — see also Swofford and Whitney (1987, 1988). We consider monthly data on leisure, \(\ell \), and real per capita data on consumption, \(c \), and real per capita data on the 13 monetary assets and credit card transaction services shown in Table 1. We address three issues concerning consumer behavior: (i) consistency with the generalized axiom of revealed preference (GARP); (ii) consistency with the homothetic axiom of revealed preference (HARP); and (iii) weak separability of the representative agent’s utility function. In doing so, we use the Demetry et al. (2020) Stata command checkax which implements Varian’s (1982) algorithm. The command provides information regarding the number of observations that violate the hypothesis.

As pointed out by Hjertstrand and Swofford (2019), a single violation of tests (i) to (iii) can result in a rejection of the GARP and HARP hypothesis. Thus, besides reporting the fraction of violations, we also follow Hjertstrand and Swofford (2019) and use the Afriat efficiency index (AEI), introduced by Varian (1990), to measure the goodness of fit. If AEI equals to one, then the consumer has to spend 100% of the income to obtain the current level of utility. If AEI is less than one, then the consumer only needs to spend a fraction of the expenditure as given by the index to obtain the current level of utility.

5.1 GARP Tests

The first problem considered is whether the utility maximization hypothesis could be established for consumption, leisure, and the CFS credit card-augmented definitions of money shown in Table 1 — M1A, M2MA, MZMA, M2A, ALLA, M3A, M4A-, and M4A. A set of observed data on prices and quantities is consistent with rational choice only if the data satisfies certain revealed preference axioms. GARP for the entire data set is a necessary and sufficient condition for the utility maximization problem in (7) to have a solution. We use the Demetry et al. (2020) Stata command checkax to implement Varian’s (1982) GARP test; see also Hjertstrand et al. (2016). The command provides information regarding the number of observations that violate the hypothesis. In a data set of \(T \) observations, the total possible number of GARP violations is \(T(T-1) \) — see Demetry et al. (2020).

In panel A of Table 2, we report the fraction of violations of the GARP test in column 3 and the AEI values of the GARP test in column 5. As can be seen in column 3, there is no violation of GARP for consumption, leisure, and money at all levels of monetary aggregation,
except for M1A and M4A- with the fraction of violations of 0.02% and 0.01%, respectively. However, when we look at the AEI values of the GARP tests in column 5, consumption, leisure, and money pass the GARP tests at all levels of monetary aggregation.

5.2 HARP Tests

Because many money demand studies (based on the parametric approach) have used homothetic functional forms for the underlying aggregator function, we also test the homothetic axiom of revealed preference (HARP). According to Varian (1983), “a function $f : \mathbb{R}^n \to \mathbb{R}$ is homothetic if it is a positive monotonic transformation of a function that is homogeneous of degree 1, that is, if $f(x) \equiv g(h(x))$ where $h(x)$ is homogeneous of degree 1 and $g(h)$ is positive monotonic.” Again, we use the Demetry et al. (2020) Stata command checkax to implement the HARP test as described in Varian (1983). In a data set of T observations, the total possible number of HARP violations is T.

In panel A of Table 2, we report the fraction of violations of the HARP tests in column 4 and the AEI values of the HARP tests in column 6. Column 4 shows that the fraction of HARP violations is 100% for consumption, leisure, and money, at all levels of monetary aggregation. However, when we look at the AEI values of the GARP tests in column 6, consumption, leisure, and money satisfy the HARP test at all monetary aggregation levels, if we allow for a 1% error (as the AEI values of all HARP tests are 0.999).

Panel B of Table 2 shows that the fraction of violations of the HARP test is 100% at all levels of monetary aggregation. However, when we look at the AEI values of the HARP tests in column 6, the AEI value of the HARP test for M2MA is 1, meaning that there is no violation of HARP. Moreover, if we only allow for errors of 0.097 or less (as MZMA has the lowest AEI value of HARP of 0.903), then all the monetary aggregates can be rationalized by the homothetic weak separability model. This is generally consistent with Hjertstrand and Swofford (2019) that monetary aggregates can be approximated by homothetic preferences.

5.3 Weak Separability Tests

Finally, we test a number of hypotheses to see if weakly separable groupings could be established for the CFS credit card-augmented definitions of money shown in Table 1 — M1A, M2MA, MZMA, M2A, ALLA, M3A, M4A-, and M4A. Among all the monetary aggregates, the M1A aggregate has the smallest fraction of violations, that is 0.020. All the other groupings of assets fail the separability tests with a larger number of violations. However, when we look at the AEI values of the GARP tests as shown in column 5, if we allow for an error of 4% (as M4A- has the lowest AEI value of GARP), then all monetary aggregates satisfy GARP, suggesting that all monetary aggregates are weakly separable from consumption and leisure.
It is to be noted that testing the overall data set and subgroup data set given in Panel B of Table 2 are only necessary tests but not sufficient. It may well be that weak separability is violated although the GARP tests in Panel B are satisfied approximately, i.e., with a large AEI. With this in mind, considering that the M1A monetary aggregate appears generally consistent with a representative economic agent maximizing a separable utility function, we assume that the economic agent’s direct utility function (6) is weakly separable as follows

\[U = u(c, \ell, g(x_1, x_2, x_3)) \]

so that we can focus on the details of the demand for the services of monetary assets and credit cards, ignoring the services of consumption goods, \(c \), and leisure, \(\ell \), as in the following monetary problem

\[
\max_{\{x_1,x_2,x_3\}} g(x_1, x_2, x_3) \text{ subject to } p_1x_1 + p_2x_2 + p_3x_3 = y
\]

where \(p_1, p_2, \) and \(p_3 \) are the user costs corresponding to \(x_1, x_2, \) and \(x_3, \) respectively, and \(y \) is the expenditure on the services of monetary assets and credit cards, \(x_1, x_2, \) and \(x_3, \) determined in the first stage (that of budgeting) of the (implicit) two-stage optimization.

In what follows, we use the parametric approach to demand analysis and investigate the substitutability/complementarity relation between traditional monetary assets and credit card transaction services. In particular, we model the demand system for the monetary assets that are included in the narrowest credit card-augmented M1A monetary aggregate — transaction balances (currency, traveler’s checks, and demand deposits), \(x_1 \), other checkable deposits (OCDs) at commercial banks and thrift institutions, \(x_2 \), and credit card transaction services, \(x_3 \).

6 Parametric Demand Analysis

The parametric approach to demand analysis requires that we postulate parametric forms for the aggregator function and fit the derived demand functions to observed data. The estimated demand functions can then be used to estimate price and substitution elasticities. We use the indirect utility function to derive the demand system in budget share form, using Roy’s identity, because our estimation is significantly simplified (see Barnett (1983)). Also, as Varian (1982, p. 945) put it, the parametric approach “will be satisfactory only when the postulated parametric forms are good approximations to the ‘true’ demand functions.” We tackle this problem by using a flexible functional form.

6.1 The Minflex Laurent Flexible Functional Form

We follow Barnett (1983) and Barnett and Lee (1985) and use the Minflex Laurent reciprocal indirect utility function to approximate the dual direct utility function, \(g(x_1, x_2, x_3) \).
The Minflex Laurent reciprocal indirect utility function is written as a function of income normalized prices, \(\nu_i = p_i/y \), for \(i = 1, 2, 3 \), as

\[
h(v) = c + 2\delta^t \sqrt{v} + \sum_{i=1}^{3} d_{ii} \nu_i + \sum_{i=1}^{3} \sum_{j=1,j\neq i}^{3} d_{ij}^2 \nu_i^{\frac{1}{2}} \nu_j^{\frac{1}{2}} - \sum_{i=1}^{3} \sum_{j=1,j\neq i}^{3} \beta_{ij}^2 \nu_i^{-\frac{1}{2}} \nu_j^{-\frac{1}{2}} \tag{8}\]

where \(v \) is the vector of income normalized prices, \(c \) is a constant, and \(\delta = (\delta_1, \delta_2, \delta_3)' \). \(d_{ij} \) and \(\beta_{ij} \) are all parameters.

By applying Roy’s identity, the share equations of the monetary assets and credit card transaction services can be obtained

\[
s_i = \frac{\delta_i \nu_i^{\frac{1}{2}} + d_{ii} \nu_i + \sum_{j=1,j\neq i}^{n} d_{ij}^2 \nu_i^{\frac{1}{2}} \nu_j^{\frac{1}{2}} + \sum_{j=1,j\neq i}^{n} \beta_{ij}^2 \nu_i^{-\frac{1}{2}} \nu_j^{-\frac{1}{2}}}{\delta^t \sqrt{v} + \sum_{i=1}^{n} d_{ii} \nu_i + \sum_{i=1}^{n} \sum_{j=1,j\neq i}^{n} d_{ij}^2 \nu_i^{\frac{1}{2}} \nu_j^{\frac{1}{2}} + \sum_{i=1}^{n} \sum_{j=1,j\neq i}^{n} \beta_{ij}^2 \nu_i^{-\frac{1}{2}} \nu_j^{-\frac{1}{2}}} \tag{9}\]

for \(i = 1, 2, 3 \). Because the share equations are homogeneous of degree zero in the parameters, a normalizing restriction is needed (see Barnett (1983)). We follow Barnett and Lee (1985) and impose the normalization

\[
\sum_{i=1}^{3} d_{ii} + 2 \sum_{i=1}^{3} \delta_i + \sum_{i=1}^{3} \sum_{j=1,j\neq i}^{3} d_{ij}^2 - \sum_{i=1}^{3} \sum_{j=1,j\neq i}^{3} \beta_{ij}^2 = 1.
\]

Barnett (1983) has shown that the above reciprocal indirect utility function has more free parameters than is needed to acquire local flexibility in the Diewert (1976) sense. To reduce the number of free parameters, without losing the flexibility property, we follow Barnett (1983) and impose the following restrictions

\[d_{ij} = d_{ji}, \quad \beta_{ij} = \beta_{ji}, \quad d_{ij}\beta_{ij} = 0, \quad i \neq j. \]

Therefore, we obtain the minimal of the Minflex Laurent model, in the sense that imposing any further restrictions would eliminate its flexibility property.

6.2 Elasticity Measures

In the demand systems approach to the estimation of economic relationships, the primary interest, especially in policy analysis, is in the elasticity measures. Once the demand system is estimated, we can calculate different elasticity measures from the Marshallian demand functions, \(x_i(v), i = 1, 2, 3 \) — see Barnett and Serletis (2008) for more details. In particular,
to assess how changes in expenditure affect the quantities demanded for each asset, for each asset we compute the income elasticity, η_{iy}, as

$$\eta_{iy} = \frac{y}{x_i} \frac{\partial x_i}{\partial y}.$$

We can also compute the Marshallian demand elasticities, η_{ij}, as

$$\eta_{ij} = \frac{\partial x_i v_j}{\partial v_j x_i}, \quad i, j = 1, 2, 3.$$

In addition, we can use the Allen-Uzawa and Morishima elasticities of substitution to investigate substitutability/complementarity relationships among the assets. The Allen elasticity provides comparative-static information about the effect of price changes on absolute demand shares. Following Serletis and Feng (2010), the Allen partial elasticity of substitution can be calculated as

$$\sigma_{ij}^a = \eta_{iy} + \frac{\eta_{ij}}{s_j}$$

where s_j is the share of asset x_j. If $\sigma_{ij}^a > 0$ (that is, an increase in the price of x_j induces an increase in the optimal quantity demanded of x_i), then x_i and x_j are Allen-Uzawa (net) substitutes. Alternatively, if $\sigma_{ij}^a < 0$, then they are Allen-Uzawa (net) complements. The Allen elasticities are symmetric, in other words, $\sigma_{ij}^a = \sigma_{ji}^a$, for all i and j.

However, the Allen-Uzawa elasticity of substitution may be uninformative in the case with more than two goods — see Blackorby and Russell (1989) for more details. In that case the Morishima elasticity of substitution is the correct measure of substitution. The Morishima elasticity of substitution, σ_{ij}^m, can be calculated as

$$\sigma_{ij}^m = s_j(\sigma_{ij}^a - \sigma_{jj}^a)$$

and looks at the impact on the ratio of two assets, x_i/x_j, when there is a change in the price of asset j. Assets will be Morishima substitutes ($\sigma_{ij}^m > 0$) if an increase in p_j causes x_i/x_j to increase and Morishima complements ($\sigma_{ij}^m < 0$) if an increase in p_j causes x_i/x_j to decrease.

7 Estimation Matters

7.1 Stochastic Specification

In order to estimate the demand system (9), a stochastic version is specified, assuming that the observed share in the ith equation deviates from the true share by a disturbance term
It is typically assumed that \(\varepsilon_t = (\varepsilon_{1t}, \varepsilon_{2t}, \varepsilon_{3t})' \) is a vector of disturbance terms from a jointly normal distribution. Then the density function of \(s = (s_1, s_2, s_3) \) is

\[
f(s) = \prod_{i=1}^{3} f\left(s_i - \frac{\delta_i \nu_i^2 + d_{ii} \nu_i + \sum_{j=1, j \neq i}^{k} d_{ij} \nu_i^2 \nu_j^2 + \sum_{j=1, j \neq i}^{k} \beta_{ij} \nu_i^{-\frac{1}{2}} \nu_j^{-\frac{1}{2}}}{\delta' \sqrt{\nu} + \sum_{i=1}^{k} d_{ii} \nu_i + \sum_{i=1, j=1, j \neq i}^{k} d_{ij} \nu_i^2 \nu_j^2 + \sum_{i=1}^{k} \sum_{j=1, j \neq i}^{k} \beta_{ij} \nu_i^{-\frac{1}{2}} \nu_j^{-\frac{1}{2}}} \right) = f(\varepsilon_1) f(\varepsilon_2) f(\varepsilon_3)
\]

where \(f(\varepsilon_i) \) is the density function of \(\varepsilon_i \). The corresponding log-likelihood function is

\[
\mathcal{L}(\theta, f) = \ln f(\varepsilon_1) + \ln f(\varepsilon_2) + \ln f(\varepsilon_3)
\]

where \(\theta \) represents all the parameters in the Minflex Laurent demand system.

7.2 Traditional Estimation

The traditional approach to demand systems estimation further assumes that the elements of \(\varepsilon_t \) follow a joint standard normal distribution. Because the sum of the shares equals 1, the demand system as shown in equation (9) is a singular system and there is singularity in the covariance matrix of the residuals under the joint normality assumption. The singularity of the distribution of \(\varepsilon_t \) is due to the fact that the components of \(\varepsilon_t \) identically add up to zero. It is also to be noted that recently Serletis and Xu (2020) address the estimation of singular demand systems with heteroscedastic disturbances, relaxing the homoscedasticity assumption and instead assuming that the covariance matrix of the errors of the demand system is time-varying.

Since Barten (1969), to estimate the demand system and the corresponding log-likelihood function (11), one of the share equations in (9) is arbitrarily deleted. That is, one of \(\ln f(\varepsilon_i) \) is deleted from the log-likelihood function (11) due to the assumption of joint normality and the resulting vector has a non-singular distribution. As Barten (1969) shows, under the joint normality assumption, the parameter estimates obtained by trace minimization are invariant to the equation deleted.

7.3 A Copula Approach

The joint normality assumption is restrictive. For monetary assets and credit card transaction services, it is likely that there are dependencies among the disturbance terms, \(\varepsilon_i \), \(i = 1, 2, 3 \), and, moreover, such dependence structures could be nonlinear. Copulae are a
powerful tool for modelling nonlinear dependence between random variables, and in particular dependence in the tails of the distributions (known as ‘tail dependence’).

According to Sklar (1973), copulae can be used to express a multivariate distribution in terms of its marginal distributions. In particular, we can use copulae to piece together joint distributions when only marginal distributions are known (Trivedi and Zimmer (2007 p. 11)). Let \(F_{12}(\varepsilon_1, \varepsilon_2) \) be an unknown joint distribution function of \((\varepsilon_1, \varepsilon_2)\). Then there is a unique copula function, \(C \), such that

\[
F_{12}(\varepsilon_1, \varepsilon_2) = C(F_1(\varepsilon_1), F_2(\varepsilon_2)) = C(u_1, u_2)
\]

where \(u_1 = F_1(\varepsilon_1) \) and \(u_2 = F_2(\varepsilon_2) \) are the marginal cumulative distribution functions of \(\varepsilon_1 \) and \(\varepsilon_2 \), respectively. The joint density function \(f_{12}(\varepsilon_1, \varepsilon_2) \) is

\[
f_{12}(\varepsilon_1, \varepsilon_2) = \frac{\partial^2 F_{12}(\varepsilon_1, \varepsilon_2)}{\partial \varepsilon_1 \partial \varepsilon_2} = \frac{\partial^2 C(u_1, u_2)}{\partial u_1 \partial u_2} \frac{\partial F_1(\varepsilon_1)}{\partial \varepsilon_1} \frac{\partial F_2(\varepsilon_2)}{\partial \varepsilon_2} = c(u_1, u_2)f_1(\varepsilon_1)f_2(\varepsilon_2)
\]

(12)

where \(c(u_1, u_2) = \frac{\partial^2 C(u_1, u_2)}{\partial u_1 \partial u_2} \) and \(f_1(\varepsilon_1) \) and \(f_2(\varepsilon_2) \) are the probability density functions of \(F_1(\varepsilon_1) \) and \(F_2(\varepsilon_2) \), respectively. For independent copulae, \(C(u_1, u_2) = u_1 u_2 \) and \(c(u_1, u_2) = 1 \).

Let \(\varepsilon = (\varepsilon_1, \varepsilon_2, \varepsilon_3) \sim F \) with marginal distribution functions \(F_1(\varepsilon_1) \), \(F_2(\varepsilon_2) \), and \(F_3(\varepsilon_3) \) and the corresponding density functions \(f_1(\varepsilon_1) \), \(f_2(\varepsilon_2) \), and \(f_3(\varepsilon_3) \), respectively. According to Aas and Berg (2009, p. 6) and Brechmann and Schepsmeier (2013, p. 3), by recursive conditioning we can write

\[
f(\varepsilon_1, \varepsilon_2, \varepsilon_3) = f_3(\varepsilon_3)f(\varepsilon_2|\varepsilon_3)f(\varepsilon_1|\varepsilon_2, \varepsilon_3)
\]

(13)

\[
f(\varepsilon_2|\varepsilon_3) = \frac{f(\varepsilon_2, \varepsilon_3)}{f_3(\varepsilon_3)}
\]

(14)

\[
f(\varepsilon_1|\varepsilon_2, \varepsilon_3) = \frac{f(\varepsilon_1, \varepsilon_2, \varepsilon_3)}{f_3(\varepsilon_3)f(\varepsilon_2|\varepsilon_3)} = \frac{f(\varepsilon_1, \varepsilon_2|\varepsilon_3)}{f(\varepsilon_2|\varepsilon_3)}.
\]

(15)

By Sklar’s theorem, (12), we have

\[
f(\varepsilon_2, \varepsilon_3) = c_{2,3}(F_2(\varepsilon_2), F_3(\varepsilon_3))f_2(\varepsilon_2)f_3(\varepsilon_3).
\]

(16)

Plugging equation (16) into equation (14) yields

\[
f(\varepsilon_2|\varepsilon_3) = \frac{f(\varepsilon_2, \varepsilon_3)}{f_3(\varepsilon_3)} = \frac{c_{2,3}(F_2(\varepsilon_2), F_3(\varepsilon_3))f_2(\varepsilon_2)f_3(\varepsilon_3)}{f_3(\varepsilon_3)} = c_{2,3}(F_2(\varepsilon_2), F_3(\varepsilon_3))f_2(\varepsilon_2).
\]

(17)
Similarly, from equation (15) and equation (12), we obtain

\[
\begin{align*}
 f(\varepsilon_1|\varepsilon_2, \varepsilon_3) &= \frac{f(\varepsilon_1, \varepsilon_2|\varepsilon_3)}{f(\varepsilon_2|\varepsilon_3)} \\
 &= \frac{c_{1,2|3}(F(\varepsilon_1|\varepsilon_3), F(\varepsilon_2|\varepsilon_3))f(\varepsilon_1|\varepsilon_3)f(\varepsilon_2|\varepsilon_3)}{f(\varepsilon_2|\varepsilon_3)} \\
 &= c_{1,2|3}(F(\varepsilon_1|\varepsilon_3), F(\varepsilon_2|\varepsilon_3))f(\varepsilon_1, \varepsilon_3) \\
 &= c_{1,2|3}(F(\varepsilon_1|\varepsilon_3), F(\varepsilon_2|\varepsilon_3))f(\varepsilon_1) \\
 &= c_{1,2|3}(F(\varepsilon_1|\varepsilon_3), F(\varepsilon_2|\varepsilon_3))c_{1,3}(F(\varepsilon_1), F(\varepsilon_3))f_1(\varepsilon_1) \\
 &= c_{1,2|3}(F(\varepsilon_1|\varepsilon_3), F(\varepsilon_2|\varepsilon_3))c_{1,3}(F(\varepsilon_1), F(\varepsilon_3))c_{1,2|3}(F(\varepsilon_1|\varepsilon_3), F(\varepsilon_2|\varepsilon_3)).
\end{align*}
\]

where \(F(\varepsilon_1|\varepsilon_3) = \partial C_{13}(\varepsilon_1, \varepsilon_3)/\partial \varepsilon_3\) and \(F(\varepsilon_2|\varepsilon_3) = \partial C_{23}(\varepsilon_2, \varepsilon_3)/\partial \varepsilon_3\) — see Aas and Berg (2009, p. 6). The three-dimensional joint density as shown in equation (13) can therefore be represented in terms of bivariate copulae \(C_{1,3}\), \(C_{2,3}\), and \(C_{1,2|3}\) with densities \(c_{1,3}\), \(c_{2,3}\), and \(c_{1,2|3}\), respectively. These pair-copulae can be chosen independently of each other to achieve a wide range of different dependence structures. By carefully choosing component copulae \(C_{1,3}\), \(C_{2,3}\), and \(C_{1,2|3}\) and their mixture, we can construct a model that is simple yet flexible enough to generate most dependence patterns in the data.

The density function for the Minflex Laurent copula demand system can be derived by plugging equations (17) and (18) into equation (13) to obtain

\[
\begin{align*}
 f(\varepsilon_1, \varepsilon_2, \varepsilon_3) &= f_1(\varepsilon_1)f_2(\varepsilon_2)f_3(\varepsilon_3) \\
 &\quad \times c_{2,3}(F_2(\varepsilon_2), F_3(\varepsilon_3)) \\
 &\quad \times c_{1,3}(F_1(\varepsilon_1), F_3(\varepsilon_3))c_{1,2|3}(F(\varepsilon_1|\varepsilon_3), F(\varepsilon_2|\varepsilon_3)).
\end{align*}
\]

The corresponding log-likelihood function is

\[
\mathcal{L}(\theta, f; \alpha) = \ln f_1(\varepsilon_1) + \ln f_2(\varepsilon_2) + \ln f_3(\varepsilon_3) \\
+ \ln c_{2,3}(F_2(\varepsilon_2), F_3(\varepsilon_3)) \\
+ \ln c_{1,3}(F_1(\varepsilon_1), F_3(\varepsilon_3)) + \ln c_{1,2|3}(F(\varepsilon_1|\varepsilon_3), F(\varepsilon_2|\varepsilon_3))
\]

where \(\theta\) represents (as before) all the parameters in the Minflex Laurent demand system and \(\alpha\) the parameters in the copula functions. We assume that each of \(\varepsilon_1\), \(\varepsilon_2\), and \(\varepsilon_3\) follows a univariate normal distribution, that is \(\varepsilon_1 \sim N(0, \sigma_1^2)\), \(\varepsilon_2 \sim N(0, \sigma_2^2)\), and \(\varepsilon_3 \sim N(0, \sigma_3^2)\).

According to Sklar’s theorem (see equation (12)), when \(\varepsilon_1\), \(\varepsilon_2\), and \(\varepsilon_3\) are independent, \(c_{1,3}(F_1(\varepsilon_1), F_3(\varepsilon_3))\), \(c_{2,3}(F_2(\varepsilon_2), F_3(\varepsilon_3))\), and \(c_{1,2|3}(F(\varepsilon_1|\varepsilon_3), F(\varepsilon_2|\varepsilon_3))\) all equal to 1. When each of \(\varepsilon_1\), \(\varepsilon_2\), and \(\varepsilon_3\) is following a standard normal distribution and \(\varepsilon_1\), \(\varepsilon_2\), and \(\varepsilon_3\) are
independent of each other, the joint density function in equation (19) collapses to (10) and the log-likelihood function (20) collapses to (11). Therefore, the estimation of the Minflex Laurent demand system under the joint normality assumption for the errors is a special case of the Minflex Laurent copula demand system.

As Berndt and Savin (1975, p. 937) put it, “by singular equation systems we mean systems in which the sum of the regressands at each observation is equal to a linear combination of certain regressors.” By relaxing the assumption of joint normality in the disturbance terms, we allow nonlinear dependence across the disturbance terms of the demand system equations, and the sum of the regressands at each observation is no longer a linear combination of certain regressors, but a nonlinear combination of certain regressors. Therefore, the distribution of \(\varepsilon \), is not singular when we allow nonlinear dependence across the disturbance terms of the demand system equations. Thus, we do not need to arbitrarily delete any equation in our maximum likelihood estimation of equations (9) to get a non-singular distribution.

The estimates of our Minflex Laurent copula demand system are obtained by solving the score equations \(\partial L / \partial \phi = 0 \), where \(\phi = (\theta, \alpha) \) represents all the parameters in the demand system and the copulae. These equations will be nonlinear in general, but standard quasi-Newton iterative algorithms are available in most matrix programming languages. Let the solution be \(\hat{\phi}_{FML} \). According to Trivedi and Zimmer (2007 p. 57), by standard likelihood theory under regularity conditions, \(\hat{\phi}_{FML} \) is consistent for the true parameter vector \(\phi \) and its asymptotic distribution is given by

\[
\sqrt{n} \left(\hat{\phi}_{FML} - \phi \right) \overset{d}{\to} N \left(0, - \left(n \lim \frac{1}{n} \frac{\partial^2 L (\phi)}{\partial \phi \partial \phi'} \right)^{-1} \right).
\] (21)

Quasi-likelihood estimation is preferred as it allows for possible misspecification of the copula and the “sandwich” variance estimator is consistent.

The construction of the three-dimensional dependence copula we described above from equations (13)-(19) is called pair copula construction (PCC), originally proposed by Joe (1996) and later discussed in detail by Bedford and Cooke (2001, 2002) and Kurowicka and Cooke (2006). The PCC is hierarchical in nature. The modelling scheme is based on a decomposition of a multivariate density into a cascade of bivariate copula densities. For a \(\kappa \)-dimensional problem, the PCC allows for the free specification of \(\kappa (\kappa - 1)/2 \) copulae. The bivariate copulae may be from any family and several families may well be mixed in one PCC.

It is to be noted that a different method for building higher-dimensional copulae, the nested Archimedean construction (NAC), is also commonly used. For example, Serletis and Xu (2021) use NAC in their investigation of interfuel substitution in the United States with the Minflex Laurent demand system. However, the NAC only allows for the modelling of up to \(\kappa - 1 \) bivariate copulae. Aas and Berg (2009) compare the nested Archimedean construction and the pair-copula construction and show that the former is much more restrictive.
than the latter in two respects. In particular, the NAC has strong limitations on the degree of dependence in each level of the NAC, and all the bivariate copulae in this construction have to be Archimedean. They claim that the PCC is more suitable than the NAC for high-dimensional modelling.

The ways to write a trivariate probability density function in terms of the conditional probability density functions and univariate probability density functions are not unique. We first have to choose which variables to join at the first level of the PCC. According to Aas and Berg (2009, p. 646), in empirical analysis, we usually join the variables that have the strongest tail dependence first. Having chosen the order of the variables at the first level, we then can determine which factorization to use. We discuss the steps of choosing copulae in detail in Section 8.2.

8 Empirical Evidence

8.1 Traditional Estimation

All the estimations are performed in RATS 10.0. We first use the maximum log-likelihood estimation method to estimate the Minflex Laurent demand system based on the joint standard normality distribution assumption as shown in equation (11). We present the parameter estimates (together with p-values) in column 2 of Table 3. To check whether the assumption of joint normality of the residuals holds, we perform the Shapiro-Wilk (1965) normality test. The data reject the null hypothesis of the joint normal distribution of \(\varepsilon_1, \varepsilon_2, \) and \(\varepsilon_3 \) with a p-value of 0.000. In other words, \(\varepsilon_1, \varepsilon_2, \) and \(\varepsilon_3 \) are not jointly independent but are correlated.

In column 2 of Table 4 we present the linear correlation coefficients of the \((\varepsilon_1, \varepsilon_2), (\varepsilon_1, \varepsilon_3), \) and \((\varepsilon_2, \varepsilon_3) \) pairs, conditional on the estimates of \(\mathbf{\Theta} \) in equation (11). As can be seen, the linear correlation coefficients of the \((\varepsilon_1, \varepsilon_2), (\varepsilon_1, \varepsilon_3), \) and \((\varepsilon_2, \varepsilon_3) \) pairs are -0.757, 0.024, and -0.671, respectively. We find a sharp increase in the linear correlation coefficients of \((\varepsilon_1, \varepsilon_3) \) and \((\varepsilon_2, \varepsilon_3) \) over the recession periods compared to the correlation coefficients over the non-recession period. Moreover, the sign of the correlation between \(\varepsilon_1 \) and \(\varepsilon_3 \) switched from 0.087 in the non-recession period to -0.524 in the recession period.

Poon et al. (2004) summarizes that the conventional dependence measure, the linear correlation coefficient, calculated as the average of deviations from the mean, assumes a linear relationship between variables which follow a joint Gaussian distribution. The risk of joint extreme events could be underestimated. Moreover, it cannot distinguish between positive and negative returns, neither the large nor small values. Alternatively, both Kendall’s \(\tau \) and Spearman’s \(\rho \) statistics can describe the nonlinear tail dependence structure. Kendall’s \(\tau \) is defined as

\[
\rho_\tau(\varepsilon_1, \varepsilon_2) = \Pr[(\varepsilon_1 - \varepsilon_1^0)(\varepsilon_2 - \varepsilon_2^0) > 0] - \Pr[(\varepsilon_1 - \varepsilon_1^0)(\varepsilon_2 - \varepsilon_2^0) < 0]
\]
where \((\varepsilon_1^1, \varepsilon_2^1)\) and \((\varepsilon_1^2, \varepsilon_2^2)\) are two independent pairs of random variables. The first term on the right, \(\Pr[(\varepsilon_1^1 - \varepsilon_1^2)(\varepsilon_2^2 - \varepsilon_2^1) > 0]\), is referred to as \(\Pr[\text{concordance}]\) and the second term, \(\Pr[(\varepsilon_1^1 - \varepsilon_1^2)(\varepsilon_2^1 - \varepsilon_2^2) < 0]\), as \(\Pr[\text{discordance}]\). Thus,

\[
\rho_r(\varepsilon_1, \varepsilon_2) = \Pr[\text{concordance}] - \Pr[\text{discordance}]
\]

is a measure of the relative difference between the two random variables. Spearman’s \(\rho\) is defined as

\[
\rho_s(\varepsilon_1, \varepsilon_2) = \rho(F_1(\varepsilon_1), F_2(\varepsilon_2))
\]

where \(\varepsilon_1\) and \(\varepsilon_2\) are two random variables, and \(F_1\) and \(F_2\) are the corresponding distribution functions. Spearman’s \(\rho\) is the linear correlation between \(F_1(\varepsilon_1)\) and \(F_2(\varepsilon_2)\), which are integral transforms of \(\varepsilon_1\) and \(\varepsilon_2\). Both Kendall’s \(\tau\) and Spearman’s \(\rho\) use the rankings of the data to measure the relationship between two variables, while the linear correlation coefficient uses actual values to measure the relationship between the two variables. As demonstrated by Embrechts et al. (2002), rank correlations are more robust measures of dependence than linear correlation.

In columns 3 and 4 of Table 4 we report the Kendall’s \(\tau\) and Spearman’s \(\rho\) rank correlation coefficients, respectively. As can be seen, they are different across pairs. There is negative dependence for all the pairs and the dependence is the strongest between \(\varepsilon_1\) and \(\varepsilon_2\), with Kendall’s \(\tau\) of \(-0.602\) and Spearman’s \(\rho\) of \(-0.824\). The potential source of dependence can be unmeasured factors such as shocks and innovations in the demand of each good. To explore the dependence structure and the choice of the appropriate copula to use, we scatter plot the \((\varepsilon_1, \varepsilon_2)\), \((\varepsilon_1, \varepsilon_3)\), and \((\varepsilon_2, \varepsilon_3)\) pairs in Figures 6-8. Clearly, the \((\varepsilon_1, \varepsilon_2)\) and \((\varepsilon_1, \varepsilon_3)\) pairs exhibit negative dependence. Moreover, Figures 6 and 7 show that the observations are clustered at the very left and these clusters are quite sizeable, indicating there could be lower tail dependence in the \((\varepsilon_1, \varepsilon_2)\) and \((\varepsilon_1, \varepsilon_3)\) pairs. Figure 8 shows slight right tail dependence; the clustering of observations and the tail dependence structure are less obvious than those of Figures 6 and 7.

The necessity to go beyond the traditional estimation of demand systems to address dependence structures in the error terms has already been recognized. For example, Serletis and Isakin (2017) and Serletis and Xu (2020), relax the homoscedasticity assumption, assume that the covariance matrix of the errors of the demand system is time-varying, and use time-varying parameterizations of the variance model, such as the VECCH, BEKK, and dynamic conditional correlation (DCC) parameterizations. Moreover, Serletis and Xu (2019) use Markov regime switching to accommodate structural breaks in the variance and Serletis and Xu (2021) use the copula approach in their investigation of interfuel substitution. In fact, in the finance literature, there is a general consensus on the contagion phenomenon, known as a significant increase in cross-market linkages after a shock to one market, especially a statistically significant increase in correlations over economic contractions. As Bae et al. (2003) have pointed out, the intuition for such contagion phenomena is extremely bad events that lead to excess volatility and even panics.
8.2 The Copula Approach

An appropriate copula to use is one which best captures dependence features of the outcome variables. The important consideration when selecting an appropriate copula is whether dependence is accurately represented. Since Figures 6 and 7 show clear lower tail dependence, copulae that can only capture upper tail dependence, such as the Gumbel (1960) and Joe (1993) copulae might be inappropriate. In what follows, we focus on the Clayton (1978) copula, the Frank (1979) copula, and the mixture of the Clayton and Frank copulae. As the Clayton copula is only able to capture positive dependence, to be able to capture the negative dependence of the \((\varepsilon_1, \varepsilon_2)\) and \((\varepsilon_1, \varepsilon_3)\) pairs, we transform \(F_1(\varepsilon_1)\) to \(1 - F_1(\varepsilon_1)\), where \(F_1\) is the cdf of \(\varepsilon_1 \sim N(0, \sigma_1^2)\).

It is also important to note at this stage that the dependence measures discussed so far are conditional on the explanatory variables and parameter estimates of the Min‡ ex Laurent demand system from equations (9) and (11). Consequently, dependence conditional on the explanatory variables and parameter estimates of the Min‡ ex Laurent copula demand system as shown in equation (20) can be different. As pointed out by Trivedi and Zimmer (2007 p. 79), “a valid empirical approach is to estimate several different copulae and choose the model that yields the largest penalized log-likelihood value.” In what follows, we choose the AIC value as a measure of the goodness of fit.

8.2.1 Clayton Copula

Consider the pair \((\varepsilon_1, \varepsilon_2)\), where \(\varepsilon_1 \sim N(0, \sigma_1^2)\), \(\varepsilon_2 \sim N(0, \sigma_2^2)\), and \(u_1 = F_1(\varepsilon_1)\) and \(u_2 = F_2(\varepsilon_2)\) are the cumulative distribution functions of \(\varepsilon_1\) and \(\varepsilon_2\), respectively. The bivariate Clayton copula of \((\varepsilon_1, \varepsilon_2)\) is

\[
C(u_1, u_2; \alpha) = (u_1^{-\alpha} + u_2^{-\alpha} - 1)^{-1/\alpha}.
\]

The probability density function (pdf) for the bivariate Clayton copula is

\[
c(u_1, u_2; \alpha) = \frac{(1 + \alpha)(u_1^{-\alpha} + u_2^{-\alpha} - 1)^{-\frac{1}{\alpha} - 2}}{(u_1u_2)^{\alpha + 1}}
\]

where \(\alpha \geq 0\). The Clayton copula can capture positive lower tail dependence but cannot capture negative dependence nor upper tail dependence.

Given the functional form of the Clayton copula, as shown in equations (22) and (23), using pair-copula construction the pdf of the trivariate Clayton copula can be derived according to equation (19). Specifically, according to equation (23), we have

\[
c_{1,3}(F_1(\varepsilon_1), F_2(\varepsilon_3)) = \frac{(1 + \alpha_1)(u_1^{-\alpha_1} + u_3^{-\alpha_1} - 1)^{-\frac{1}{\alpha_1} - 2}}{(u_1u_3)^{\alpha_1 + 1}}
\]
and
\[c_{2,3}(F_1(\varepsilon_2), F_3(\varepsilon_3)) = \frac{(1 + \alpha_2)(u_2^{-\alpha_2} + u_3^{-\alpha_2} - 1)^{-\frac{1}{\alpha_2}}}{(u_2u_3)^{\alpha_2 + 1}} \] (25)

where \(u_i = F_i(\varepsilon_i) \) and \(F_i \) is the cumulative distribution function (cdf) of \(\varepsilon_i \sim N(0, \sigma_i^2) \) for \(i = 1, 2, 3 \). \(\alpha_1 \) and \(\alpha_2 \) are the dependence parameters in \(c_{1,3} \) and \(c_{2,3} \). Based on equation (23), we also have

\[c_{1,2,3}(F(\varepsilon_1|\varepsilon_3), F(\varepsilon_2|\varepsilon_3)) = \frac{(1 + \alpha_3)(u_4^{-\alpha_3} + u_5^{-\alpha_3} - 1)^{-\frac{1}{\alpha_3}}}{(u_4u_5)^{\alpha_3 + 1}} \] (26)

where
\[u_4 = F(\varepsilon_2|\varepsilon_3) = \frac{\partial C_{23}(\varepsilon_2, \varepsilon_3)}{\partial \varepsilon_3} = u_3^{-\alpha_2} - 1(u_3^{-\alpha_2} + u_2^{-\alpha_2} - 1)^{-1/\alpha_2 - 1} \]

and
\[u_5 = F(\varepsilon_1|\varepsilon_3) = \frac{\partial C_{13}(\varepsilon_1, \varepsilon_3)}{\partial \varepsilon_3} = u_3^{-\alpha_1} - 1(u_3^{-\alpha_1} + u_1^{-\alpha_1} - 1)^{-1/\alpha_1 - 1}. \]

Plugging equations (24), (25), and (26) into (19), yields the pdf function of the Minflex Laurent Clayton copula demand system

\[
f(\varepsilon_1, \varepsilon_2, \varepsilon_3) = f_1(\varepsilon_1) f_2(\varepsilon_2) f_3(\varepsilon_3) \times c_{1,3}(F(\varepsilon_1), F(\varepsilon_3)) \\
\times c_{2,3}(F(\varepsilon_2), F(\varepsilon_3)) \times c_{1,2,3}(F(\varepsilon_1|\varepsilon_3), F(\varepsilon_2|\varepsilon_3)) \\
= f_1(\varepsilon_1) f_2(\varepsilon_2) f_3(\varepsilon_3) \times \frac{(1 + \alpha_1)(u_4^{-\alpha_1} + u_3^{-\alpha_1} - 1)^{-\frac{1}{\alpha_1}}}{(u_4u_5)^{\alpha_1 + 1}} \times \frac{(1 + \alpha_3)(u_4^{-\alpha_3} + u_5^{-\alpha_3} - 1)^{-\frac{1}{\alpha_3}}}{(u_4u_5)^{\alpha_3 + 1}} \] (27)

where \(\varepsilon_i \sim N(0, \sigma_i^2) \), \(f_i(\varepsilon_i) \) are the pdfs, and \(u_i = F_i(\varepsilon_i) \) are the corresponding cdfs of \(\varepsilon_i \), \(i = 1, 2, 3 \). \(\alpha_i \) are the copulae dependence parameters.

8.2.2 Frank Copula

The cumulative distribution function of the Frank (1979) copula of \((\varepsilon_1, \varepsilon_2) \) is

\[
C(u_1, u_2; \alpha) = -\alpha^{-1} \ln \left(\frac{1 - e^{-\alpha} - (1 - e^{-\alpha u_1})(1 - e^{-\alpha u_2})}{1 - e^{-\alpha}} \right).
\]

The pdf for the Frank copula is

\[
c(u_1, u_2; \alpha) = \frac{\alpha(1 - e^{-\alpha}) e^{-\alpha(u_1 + u_2)}}{[1 - e^{-\alpha} - (1 - e^{-\alpha u_1})(1 - e^{-\alpha u_2})]^2}.
\]
where the dependence parameter α can capture symmetric positive lower and upper tail dependence. In particular, values of $\alpha < 0$ and $\alpha > 0$ correspond to negative and positive dependence, respectively. When α approaches 0, u_1 and u_2 are independent.

Following a similar procedure as for the Clayton copula, we can obtain the pdf function of the Minflex Laurent Frank copula demand system

$$f(\varepsilon_1, \varepsilon_2, \varepsilon_3) = f_1(\varepsilon_1)f_2(\varepsilon_2)f_3(\varepsilon_3) \times c_{1,3}(F_1(\varepsilon_1), F_3(\varepsilon_3))$$

$$\times c_{2,3}(F_2(\varepsilon_2), F_3(\varepsilon_3)) \times c_{1,2,3}(F(\varepsilon_1|\varepsilon_3), F(\varepsilon_2|\varepsilon_3))$$

$$= f_1(\varepsilon_1)f_2(\varepsilon_2)f_3(\varepsilon_3)
\times \frac{\alpha_1(1 - e^{-\alpha_1})e^{-\alpha_1(u_1+u_3)}}{[1 - e^{-\alpha_1} - (1 - e^{-\alpha_1u_1})(1 - e^{-\alpha_1u_3})]^2}
\times \frac{\alpha_2(1 - e^{-\alpha_2})e^{-\alpha_2(u_2+u_3)}}{[1 - e^{-\alpha_2} - (1 - e^{-\alpha_2u_2})(1 - e^{-\alpha_2u_3})]^2}
\times \frac{\alpha_3(1 - e^{-\alpha_3})e^{-\alpha_3(u_4+u_5)}}{[1 - e^{-\alpha_3} - (1 - e^{-\alpha_3u_4})(1 - e^{-\alpha_3u_5})]^2}$$

where

$$u_4 = F(\varepsilon_2|\varepsilon_3) = \frac{\partial C_{23}(\varepsilon_2, \varepsilon_3)}{\partial \varepsilon_3} = \frac{(1 - e^{-\alpha_2u_2})e^{-\alpha_2u_3}}{(1 - e^{-\alpha_2u_2})(1 - e^{-\alpha_2u_3}) - e^{-\alpha_2} + 1}$$

and

$$u_5 = F(\varepsilon_1|\varepsilon_3) = \frac{\partial C_{13}(\varepsilon_1, \varepsilon_3)}{\partial \varepsilon_3} = \frac{(1 - e^{-\alpha_1u_1})e^{-\alpha_1u_3}}{(1 - e^{-\alpha_1u_1})(1 - e^{-\alpha_1u_3}) - e^{-\alpha_1} + 1}.$$
Clayton-Frank copula demand system

\[
f(\varepsilon_1, \varepsilon_2, \varepsilon_3) = f_1(\varepsilon_1)f_2(\varepsilon_2)f_3(\varepsilon_3) \times c_{1,3}(F_1(\varepsilon_1), F_3(\varepsilon_3))
\times c_{2,3}(F_2(\varepsilon_2), F_3(\varepsilon_3)) \times c_{1,2,3}(F(\varepsilon_1|\varepsilon_3), F(\varepsilon_2|\varepsilon_3))
= f_1(\varepsilon_1)f_2(\varepsilon_2)f_3(\varepsilon_3) \times \frac{(1 + \alpha_1)(u_1^{-\alpha_1} + u_2^{-\alpha_1} - 1)^{-\frac{1}{\alpha_1} - 2}}{(u_1u_2)^{\alpha_1 + 1}}
\times \frac{\alpha_2(1 - e^{-\alpha_2})e^{-\alpha_2(u_2 + u_3)}}{(1 - e^{-\alpha_2} - (1 - e^{-\alpha_2u_2})(1 - e^{-\alpha_2u_3}))^2} \times \frac{(1 + \alpha_3)(u_4^{-\alpha_3} + u_5^{-\alpha_3} - 1)^{-\frac{1}{\alpha_3} - 2}}{(u_4u_5)^{\alpha_3 + 1}}
\]

where

\[
u_4 = F(\varepsilon_2|\varepsilon_3) = \frac{\partial C_{23}(\varepsilon_2, \varepsilon_3)}{\partial \varepsilon_3} = \frac{(1 - e^{-\alpha_2u_2})e^{-\alpha_2u_3}}{-(1 - e^{-\alpha_2u_2})(1 - e^{-\alpha_2u_3}) - e^{-\alpha_2} + 1}
\]

and

\[
u_5 = F(\varepsilon_1|\varepsilon_3) = \frac{\partial C_{13}(\varepsilon_1, \varepsilon_3)}{\partial \varepsilon_3} = u_3^{-\alpha_1 - 1}(u_3^{-\alpha_1} + u_1^{-\alpha_1} - 1)^{-1/\alpha_1 - 1}.
\]

We use the maximum likelihood method to estimate the Minflex Laurent demand system with each of the Clayton, Frank, and mixture of the Clayton and Frank copulae, based on the density functions in equations (27), (28), and (29), respectively. Since we relax the joint normality assumption in the disturbance terms and allow for nonlinear dependence across equations, there is no singularity in the covariance matrix of the residuals in the copula-based demand system. Thus, we do not need to delete any equations in our maximum likelihood estimation of the Minflex Laurent copula-based demand system. In this regard, we should note that Velasquez-Giraldo et al. (2018) use the maximum log-likelihood method to estimate a copula-based demand system by arbitrarily deleting one equation in the demand system. However, as Berndt and Savin (1975) has demonstrated when certain cross-equation restrictions are imposed, the parameter estimates obtained by trace minimization are not invariant to the equation deleted. In other words, the copula-based demand system estimates in Velasquez-Giraldo et al. (2018) are not invariant to the arbitrary deletion of one equation.

The results are presented in columns 3, 4, and 5 of Table 3. It seems that our copula-based modeling of the Minflex Laurent demand system has been fruitful. The copula parameters are statistically significant for all the copulae examined and the AIC values of the Minflex Laurent copula demand system are all lower than that under the traditional method of estimation (in the second column of Table 3). Most of the copula parameter estimates of the Clayton, Frank, and mixture of Clayton and Frank copulae are positive and statistically significant. Since we transformed \(F_1(\varepsilon_1) \) to \(1 - F_1(\varepsilon_1) \), the positive copula parameter estimates indicate that the dependence is negative for transaction balances, \(x_1 \), and OCDs (at commercial banks and thrift institutions), \(x_2 \), as well as for transaction balances and credit.
card transaction services, x_3, while the dependence is positive for OCDs and credit card transaction services.

The mixture copula has the highest log-likelihood function value and lowest AIC value, suggesting that the trivariate mixture copula-based Minflex Laurent demand system has the best goodness of fit. The mixture copula indicates that $(\varepsilon_1, \varepsilon_2)$ and $(\varepsilon_1, \varepsilon_3)$ exhibit lower tail dependence, while $(\varepsilon_2, \varepsilon_3)$ exhibits upper tail dependence. The lower tail dependence indicates that factors that cause negative shocks in one monetary asset tend to also cause negative shocks in the other assets, and vice versa. This phenomenon is similar to financial contagion — the spread of shocks (mostly on the downside) from one market (or country) to another.

It is to be noted that we also attempted to use the Joe (1993) copula. However, since the Joe copula does not permit lower tail dependence, but can only capture upper tail dependence, we experience computational problems in the estimation algorithm. With the Joe copula, the model fails to converge to any value. The fact that the Joe copula fails to converge can be interpreted as further evidence of misspecification that stems from using copulae that do not support negative dependence. As Trivedi and Zimmer (2007) argue, one might experience computational difficulties when using a misspecified copula.

9 Elasticities

The primary interest of policymakers is how the arguments of the underlying functions affect the quantities demanded. In our context, this is expressed in terms of income and price elasticities, as well as the elasticities of substitution.

In panel A of Table 5 we present the income elasticities, η_{iy}, for the three monetary goods evaluated at the mean of the data, based on the estimates of the mixture copula ML demand system. All the income elasticities are statistically significant. The income elasticity for transactions balances, η_{1y}, is 1.201 with a p-value of 0.000, suggesting that transactions balances is a luxury good. The income elasticities for credit card transaction services and OCDs are less than 1 — $\eta_{3y} = 0.938$ with a p-value of 0.000 and $\eta_{2y} = 0.645$ with a p-value of 0.000, respectively — suggesting that they are necessity goods. The literature has not reached a consensus on the magnitude of the income elasticity yet. The quantity theoretic money demand function implies a unitary income elasticity. Many empirical studies report income elasticities close to 1 (see, for example, Meltzer (1963), Feige (1964), Lucas (1988), and Teles and Zhou (2005)), but recent work reports both higher estimates (see Mulligan and Sala-i-Martin (1992)) as well as lower estimates (see Ball (2001)).

For comparison purposes, in panel B of Table 5, we also present the income elasticities based on the traditional estimation of the Minflex Laurent demand system. As can be seen, under traditional estimation, the income elasticity of credit card transaction services is also less than 1 ($\eta_{3y} = 0.866$ with a p-value of 0.000), but lower than that under the mixture
copula Minflex Laurent demand system estimation. Panel B of Table 5 also shows that under the traditional Minflex Laurent demand system estimation, the income elasticity of transaction balances, η_{1y}, is 1.181 with a p-value of 0.000 and that of OCDs is $\eta_{2y} = 0.646$ with a p-value of 0.000, both very close to those based on the copula estimation.

We also present the own- and cross-price elasticities in Table 5. They reveal a pattern that is consistent with neoclassical consumer theory. That is, all own-price elasticities in panels A and B of Table 5 are negative (and statistically significant), consistent with the view that the demand for money is negatively related to the opportunity cost of holding money. Also, all the assets are own-price inelastic as $|\eta_{ii}| \leq 1$.

From the point of view of monetary policy, the elasticities of substitution among the monetary assets are of prime importance. If the credit card transaction services are substitutes to monetary assets, then it is necessary to include credit card transaction services into monetary aggregates. The currently popular simple sum approach to monetary aggregation requires that the components of the monetary aggregates are perfect substitutes to each other and that the elasticities of substitution between each other are very high (perhaps infinite). In Table 6 we show estimates of the Allen elasticities of substitution. We expect the three diagonal terms, representing the own-elasticities of substitution for the three assets, to be negative. This expectation is clearly achieved. Panel A shows that the Allen own-elasticities of substitution for the mixture copula-based Minflex Laurent demand system are $\sigma_{11}^a = -0.342$ with a p-value of 0.000, $\sigma_{22}^a = -0.559$ with a p-value of 0.000, and $\sigma_{33}^a = -0.867$ with a p-value of 0.000.

However, the Allen elasticity of substitution produces ambiguous results off-diagonal, and we use the asymmetrical Morishima elasticity of substitution to investigate the relation among the components of the M1A monetary aggregate. Based on the Morishima elasticities of substitution of the mixture copula-based Minflex Laurent demand system as shown in panel A of Table 6, all the assets are Morishima substitutes. Moreover, all the mean Morishima elasticities of substitution are less than 1, with the highest being $\sigma_{31}^m = 0.370$. We are interested in how changes in the user cost of credit card transaction services, p_3, affect the quantities demanded of the monetary assets, x_1 and x_2. As can be seen, $\sigma_{13}^m = 0.299$ and $\sigma_{23}^m = 0.167$, suggesting that a one percent increase in the user cost of credit card transaction services induces a 0.299 percent decrease in the relative demand for transaction balances, x_1/x_3, and a 0.167 percent decrease in the relative demand for OCDs at commercial banks and thrift institutions, x_2/x_3. It should also be noted that the Morishima elasticities of substitution between credit card transaction services and the monetary assets are larger under the mixture copula-based Minflex Laurent demand system estimation compared to the traditional Minflex Laurent demand system estimation (in panel B of Table 6). The positive elasticities of substitution between credit card transaction services and the monetary assets support the Divisia approach to monetary aggregation.
The Effects of Covid-19 on Payment Preferences

The sudden appearance of Covid-19 has been swiftly ravaging the United States and global economy. The unemployment rate in the United States shot up to 14.7 percent in April 2020, while personal consumption expenditures were almost 20 percent lower than at their peak in February 2020. This pandemic shock has reduced spending across all methods of payment, including cash, debit cards, and credit cards. At the meantime, the pandemic panic has led to an unprecedented demand for cash, and an accelerated adoption of cards and contactless payments. Although it is not surprising that the pandemic has led to a shift towards cash, the scale has been unprecedented. According to a Federal Reserve survey of consumers taken in May 2020 — see Kim et al. (2020) — during the pandemic, holdings of cash per person increased by 17 percent, from $69 to $81; and the amount of cash stored at home or elsewhere rose by nearly 90 percent, from $257 to $483. Even those consumers who favor the use of debit and credit cards, they were holding more cash in May than they were before the pandemic. The change in payment methods and demand for monetary services during the pandemic could be driven by the Covid-19 circumstances along with the changes in consumption patterns. It could also be driven by the changes in the opportunity costs of holding different monetary assets induced by the reduced federal funds rate and the Fed’s unconventional monetary policy.

The literature on the change of payment patterns and demand for monetary services during the pandemic is growing fast and has attracted attention from both academia and central banks. Most studies use survey data and event studies. Coibion et al. (2020) studies how Covid-19 causally affects household spending and macroeconomic expectations using survey data. Kim et al. (2020) study how payment behavior has changed by the pandemic, given the dramatic increase in the demand for currency, along with anecdotal evidence of changing consumer payment practices during the pandemic. Similarly, Chen et al. (2020) survey the Canadian data and analyze the effects of the pandemic on the demand for cash and on the shift of payment methods in Canada, and find that cash in circulation in Canada grew sharply in March and April 2020. Garratt et al. (2020) uses Google searches data during the pandemic to demonstrate a shift in public interest from cash-related terms to digital payment options.

We analyze the demand for monetary services during the pandemic by looking at the dynamics of the time-varying Morishima elasticities of substitution. The shift in payment methods and the demand for monetary services reflects the rational re-allocation of economic activity by economic agents. Since our demand system estimators are obtained by using data starting from 2006 and the sample size of the Covid-19 pandemic period is relatively small, the demand system parameter estimates are likely to be dominated by the information before the Covid-19 crisis. Yet, such an assumption is plausible as consumer payment preferences are constrained by demographic and economic factors that are unlikely to change overnight, but the user costs of monetary services can change overnight in the financial markets. As
Bullock (2020) and Brainard (2020) point out, there is still a significant number of people in the population, such as older people or people on lower incomes, who continue to use cash for face-to-face payments, due to limited access to banking and technology. However, if the pandemic persists and effective measures are put in place to overcome these barriers, with a longer sample period of data, the demand system parameter estimates will be more influenced by the information set and the demand for monetary services during the pandemic.

With this in mind, we investigate the stability of the time-varying Morishima elasticities of substitution over the sample period. In this regard, from the perspective of monetary policy, policy decisions based on targeting the money supply will be more effective if the Morishima elasticities of substitution are stable over time. In Figures 9-11, we plot the Morishima elasticities of substitution and also provide a comparison between those of the Minflex Laurent mixture copula demand system and those of the traditional Minflex Laurent demand system. As can be seen, the Morishima elasticities of substitution are always larger under the Minflex Laurent mixture copula estimation, than under the traditional estimation, suggesting a slightly higher instability of the asset demand functions.

We also find that under the Minflex Laurent mixture copula estimation, the Morishima elasticity of substitution between transactions balances and credit card transaction services has remained relatively stable during the pandemic, irrespective of changes in the user cost of transactions balances or credit card transaction services (see Figure 10). The differences between credit card transaction services and cash have been manifested during the Covid-19 pandemic and contribute to the relatively stable elasticity of substitution between credit card transaction services and transaction balances. Credit card transaction services can support social distancing through online payment and phone payment, while cash cannot; cash is a safe store of value during a crisis. The adoption of credit card transaction services is accelerated due to its social distancing properties. In this regard, Krueger et al. (2020) distinguish goods by their degree to which they can be consumed at home rather than in a social (and thus possibly contagious) context, and show that the decline in the demand for certain goods is simply due to rational reallocation of economic activity, such as shifts from partying together in bars to talking online, staying at home as opposed to congregating in restaurants. We observe similar shifts in the consumption of monetary services and credit card transaction services. The relatively stable Morishima elasticity of substitution between credit card transaction services and cash highlights the distinct social distancing features of credit card transaction services.

The other Morishima elasticities of substitution have declined significantly during the Covid-19 pandemic, except for \(\sigma_{21}^m \) which increased (see the lower panel of Figure 9), suggesting that increases in the user cost of transaction balances increased the relative demand for OCDs (the \(x_2/x_1 \) ratio). The Morishima elasticity of substitution between transaction balances and OCDs when the user cost of OCDs changes, \(\sigma_{12}^m \), as well as the Morishima elasticity of substitution between OCDs and credit card transaction services, irrespective of which user cost changes, fell significantly during the pandemic (see the first panel of Figure
9 and the two panels of Figure 11, respectively).

11 Conclusion

This paper contributes to the literature by investigating the demand for monetary assets when credit card transaction services enter the representative consumer’s utility function. We use recent advances in microeconometrics and an econometric framework that allows the estimation of demand functions in a systems context, using a flexible functional form for the utility function based on the dual approach to demand system generation. We model the Minflex Laurent demand system, introduced by Barnett (1983), paying explicit attention to theoretical regularity, as suggested by Barnett et al. (1992), and relax the joint normality assumption of the disturbance terms of the demand system that has been used in most of the empirical monetary demand systems literature. In doing so, we use copula methods to capture the dependence of the disturbance terms across the monetary components. In particular, we express the joint distribution of the demand system error terms as a function of the marginals and copulae which are able to capture the dependence structure of the innovation terms across the demand system equations.

The empirical results, based on the Minflex Laurent demand system and mixture copula, show that the Morishima elasticities of substitution among transaction balances, OCDs at commercial banks and thrift institutions, and credit card transaction services are larger than those based on the estimation of the Minflex Laurent demand system under the joint normality of the errors assumption. The positive Morishima elasticities of substitution between credit card transaction services and traditional monetary assets suggest that credit card transaction services and traditional monetary assets are substitutes and that the credit card transaction services should be included in the monetary aggregates. Our results support Barnett et al. (2016), Barnett and Liu (2019), and Liu et al. (2020) who argue that much of the policy relevance of the Divisia monetary aggregates could be strengthened by the use of credit card-augmented Divisia monetary aggregates.

Finally, in terms of our framework, which is based on a strong link between neoclassical microeconomic theory and econometric implementation, the variation in the Morishima elasticities of substitution during the Covid-19 pandemic reflects the changes in preference structure for monetary services demand. The lower and stable Morishima elasticities of substitution during the Covid-19 pandemic indicate that the asset demand functions have become more stable and predictable, enhancing the Fed’s ability to target key monetary aggregates to accommodate the demand for monetary services and affect general macroeconomic variations. During the global financial and coronavirus crises, central banks use both conventional and unconventional monetary policies to support their economies. Specifically, the Federal Reserve and central banks in many other developed countries are using unconventional policy actions, such as quantitative easing and forward guidance to lower long-term
interest rates after policy rates hit the zero lower bound. Such injections of liquidity could have been directed at stabilizing the growth rate of a monetary aggregate in the face of severe shocks, and an effective measure of liquidity services is needed in this regard — see, for example, Belongia and Ireland (2018). By including the joint liquidity services of credit cards and monetary assets, the new credit card-augmented CFS Divisia monetary aggregates seem conceptually more relevant to macroeconomic research as measures of monetary services in the economy, and can shed some light on the Barnett critique — see Barnett et al. (2016).

Finally, we would like to note that the credit card-augmented Divisia monetary aggregates, derived by Barnett et al. (2016) and now provided by the Center for Financial Stability, are based on the representative agent framework. However, the micro heterogeneity could affect the user cost of credit card transactions and the estimated substitution patterns. These features include but not limited to cash-back (or other types of) rewards, teaser rates (often 0 percent) on loans for a short (e.g., six-months) period, and different interest rates on outstanding balances after the teaser rates expire. Therefore, potentially productive future research, beyond the representative agent framework (requiring different data and methods), could account for the heterogeneity in the credit card users and increase the accuracy in the track of liquidity services in the economy.
References

tistics. *Philosophical Transactions of the Royal Society of London. Series A, Containing
Papers of a Mathematical or Physical Character.*

Figure 1: Number of noncash payments
Figure 2: Value of credit card payments
Figure 3: Log level of monetary aggregates

Figure 4: Year-over-year growth rates of monetary aggregates
<table>
<thead>
<tr>
<th>Liquid asset</th>
<th>CFS credit card-augmented Divisia monetary aggregates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M1A</td>
</tr>
<tr>
<td>x_1</td>
<td>✓</td>
</tr>
<tr>
<td>Transaction balances</td>
<td></td>
</tr>
<tr>
<td>Currency</td>
<td></td>
</tr>
<tr>
<td>Travelers’ checks</td>
<td></td>
</tr>
<tr>
<td>Demand deposits</td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>✓</td>
</tr>
<tr>
<td>OCDs at commercial banks</td>
<td></td>
</tr>
<tr>
<td>+ OCDs at thrifts institutions</td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>✓</td>
</tr>
<tr>
<td>Credit card transaction services</td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td>✓</td>
</tr>
<tr>
<td>Saving deposits at banks including MMDAs</td>
<td></td>
</tr>
<tr>
<td>x_5</td>
<td>✓</td>
</tr>
<tr>
<td>Saving deposits at thrifts including MMDAs</td>
<td></td>
</tr>
<tr>
<td>x_6</td>
<td>✓</td>
</tr>
<tr>
<td>Retail money-market funds</td>
<td></td>
</tr>
<tr>
<td>x_7</td>
<td>✓</td>
</tr>
<tr>
<td>Small time deposits at commercial banks</td>
<td></td>
</tr>
<tr>
<td>x_8</td>
<td>✓</td>
</tr>
<tr>
<td>Small time deposits at thrift institutions</td>
<td></td>
</tr>
<tr>
<td>x_9</td>
<td>✓</td>
</tr>
<tr>
<td>Institutional money-market funds</td>
<td></td>
</tr>
<tr>
<td>x_{10}</td>
<td>✓</td>
</tr>
<tr>
<td>Large time deposits</td>
<td></td>
</tr>
<tr>
<td>x_{11}</td>
<td>✓</td>
</tr>
<tr>
<td>Repurchase Agreements</td>
<td></td>
</tr>
<tr>
<td>x_{12}</td>
<td>✓</td>
</tr>
<tr>
<td>Commercial paper</td>
<td></td>
</tr>
<tr>
<td>x_{13}</td>
<td>✓</td>
</tr>
<tr>
<td>T-bills</td>
<td></td>
</tr>
</tbody>
</table>
Figure 5: Income normalized user costs of monetary assets and credit card transaction services
Table 2. Utility maximization and weak separability tests

A. Utility maximization

<table>
<thead>
<tr>
<th>Monetary aggregates</th>
<th>Utility maximization hypothesis</th>
<th>GARP violations</th>
<th>HARP violations</th>
<th>AEI of GARP</th>
<th>AEI of HARP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. M1A:</td>
<td>(u(c, l, x_1, x_2, x_3))</td>
<td>0.020</td>
<td>100</td>
<td>1.000</td>
<td>0.999</td>
</tr>
<tr>
<td>2. M2MA:</td>
<td>(u(c, l, x_1, x_2, x_3, x_4, x_5, x_6))</td>
<td>0.000</td>
<td>100</td>
<td>1.000</td>
<td>0.999</td>
</tr>
<tr>
<td>3. MZMA:</td>
<td>(u(c, l, x_1, x_2, x_3, x_4, x_5, x_6, x_9))</td>
<td>0.000</td>
<td>100</td>
<td>1.000</td>
<td>0.999</td>
</tr>
<tr>
<td>4. M2A:</td>
<td>(u(c, l, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8))</td>
<td>0.000</td>
<td>100</td>
<td>1.000</td>
<td>0.999</td>
</tr>
<tr>
<td>5. MALL:</td>
<td>(u(c, l, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}))</td>
<td>0.000</td>
<td>100</td>
<td>1.000</td>
<td>0.999</td>
</tr>
<tr>
<td>6. M3A:</td>
<td>(u(c, l, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}))</td>
<td>0.010</td>
<td>100</td>
<td>1.000</td>
<td>0.999</td>
</tr>
<tr>
<td>7. M4A-:</td>
<td>(u(c, l, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}))</td>
<td>0.000</td>
<td>100</td>
<td>1.000</td>
<td>0.999</td>
</tr>
<tr>
<td>8. M4A:</td>
<td>(u(c, l, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}))</td>
<td>0.010</td>
<td>100</td>
<td>1.000</td>
<td>0.999</td>
</tr>
</tbody>
</table>

B. Weak separability

<table>
<thead>
<tr>
<th>Monetary aggregates</th>
<th>Separability hypothesis</th>
<th>GARP violations</th>
<th>HARP violations</th>
<th>AEI of GARP</th>
<th>AEI of HARP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. M1A:</td>
<td>(u(c, l, g(x_1, x_2, x_3)))</td>
<td>0.020</td>
<td>100</td>
<td>1.000</td>
<td>0.999</td>
</tr>
<tr>
<td>2. M2MA:</td>
<td>(u(c, l, g(x_1, x_2, x_3, x_4, x_5, x_6)))</td>
<td>0.380</td>
<td>100</td>
<td>0.997</td>
<td>1.000</td>
</tr>
<tr>
<td>3. MZMA:</td>
<td>(u(c, l, g(x_1, x_2, x_3, x_4, x_5, x_6, x_9)))</td>
<td>0.070</td>
<td>100</td>
<td>0.998</td>
<td>0.903</td>
</tr>
<tr>
<td>4. M2A:</td>
<td>(u(c, l, g(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8)))</td>
<td>0.440</td>
<td>100</td>
<td>0.997</td>
<td>0.984</td>
</tr>
<tr>
<td>5. MALL:</td>
<td>(u(c, l, g(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9)))</td>
<td>0.040</td>
<td>100</td>
<td>0.999</td>
<td>0.936</td>
</tr>
<tr>
<td>6. M3A:</td>
<td>(u(c, l, g(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11})))</td>
<td>0.100</td>
<td>100</td>
<td>0.997</td>
<td>0.933</td>
</tr>
<tr>
<td>7. M4A-:</td>
<td>(u(c, l, g(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12})))</td>
<td>0.230</td>
<td>100</td>
<td>0.996</td>
<td>0.921</td>
</tr>
<tr>
<td>8. M4A:</td>
<td>(u(c, l, g(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13})))</td>
<td>0.160</td>
<td>100</td>
<td>0.997</td>
<td>0.916</td>
</tr>
</tbody>
</table>

Note: Sample period, monthly 2006:7-2020:8. \((T = 170)\).
Table 3. Minflex Laurent parameter estimates

<table>
<thead>
<tr>
<th>Assets</th>
<th>Parameter</th>
<th>Normal</th>
<th>Clayton</th>
<th>Frank</th>
<th>Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = transaction balances</td>
<td>(\delta_1)</td>
<td>0.362 (0.000)</td>
<td>0.316 (0.012)</td>
<td>5.406 (0.000)</td>
<td>0.458 (0.000)</td>
</tr>
<tr>
<td>2 = OCDs at commercial banks and thrift institutions</td>
<td>(\delta_2)</td>
<td>0.000 (1.000)</td>
<td>0.000 (1.000)</td>
<td>11.120 (0.323)</td>
<td>0.000 (1.000)</td>
</tr>
<tr>
<td>3 = credit card transaction services</td>
<td>(\delta_3)</td>
<td>0.000 (1.000)</td>
<td>0.027 (0.992)</td>
<td>0.056 (0.989)</td>
<td>0.041 (0.877)</td>
</tr>
<tr>
<td></td>
<td>(d_{11})</td>
<td>0.000 (1.000)</td>
<td>8.276 (0.591)</td>
<td>0.447 (0.678)</td>
<td>0.001 (0.999)</td>
</tr>
<tr>
<td></td>
<td>(d_{12})</td>
<td>0.000 (0.045)</td>
<td>-0.228 (0.000)</td>
<td>-0.076 (0.000)</td>
<td>0.106 (0.000)</td>
</tr>
<tr>
<td></td>
<td>(d_{13})</td>
<td>0.000 (0.000)</td>
<td>-0.000 (0.525)</td>
<td>0.000 (0.000)</td>
<td>-0.003 (0.000)</td>
</tr>
<tr>
<td></td>
<td>(d_{22})</td>
<td>0.109 (0.070)</td>
<td>0.086 (0.829)</td>
<td>20.131 (0.000)</td>
<td>0.123 (0.540)</td>
</tr>
<tr>
<td></td>
<td>(d_{23})</td>
<td>0.000 (0.998)</td>
<td>0.000 (0.000)</td>
<td>0.000 (0.922)</td>
<td>0.006 (0.584)</td>
</tr>
<tr>
<td></td>
<td>(d_{33})</td>
<td>0.203 (0.010)</td>
<td>0.182 (0.899)</td>
<td>54.960 (0.000)</td>
<td>0.199 (0.519)</td>
</tr>
<tr>
<td></td>
<td>(\beta_{12})</td>
<td>0.052 (0.026)</td>
<td>-0.000 (0.000)</td>
<td>0.000 (0.000)</td>
<td>0.001 (0.000)</td>
</tr>
<tr>
<td></td>
<td>(\beta_{13})</td>
<td>-0.126 (0.000)</td>
<td>0.119 (0.000)</td>
<td>-6.524 (0.000)</td>
<td>0.121 (0.000)</td>
</tr>
<tr>
<td></td>
<td>(\beta_{23})</td>
<td>0.000 (0.998)</td>
<td>0.007 (0.000)</td>
<td>-3.905 (0.000)</td>
<td>0.001 (0.584)</td>
</tr>
<tr>
<td></td>
<td>(\alpha_1)</td>
<td>0.000 (0.920)</td>
<td>15.700 (0.000)</td>
<td>33.710 (0.000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\alpha_2)</td>
<td>0.918 (0.000)</td>
<td>81.082 (0.000)</td>
<td>28.485 (0.000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\alpha_3)</td>
<td>27.652 (0.000)</td>
<td>27.976 (0.000)</td>
<td>287.575 (0.000)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>function value</td>
<td>927.762</td>
<td>1710.448</td>
<td>1104.146</td>
<td>1710.808</td>
</tr>
<tr>
<td></td>
<td>AIC value</td>
<td>-1921.523</td>
<td>-3384.897</td>
<td>-2172.292</td>
<td>-3385.615</td>
</tr>
</tbody>
</table>

Note: Sample period, monthly 2006:7-2020:8 (\(T = 170\)). Numbers in parentheses are p-values.
Table 4. Bivariate dependence

<table>
<thead>
<tr>
<th>Series</th>
<th>Correlation</th>
<th>Kendall</th>
<th>Spearman</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Full sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ϵ_1, ϵ_2)</td>
<td>-0.757</td>
<td>-0.602</td>
<td>-0.824</td>
</tr>
<tr>
<td>(ϵ_1, ϵ_3)</td>
<td>0.024</td>
<td>-0.111</td>
<td>-0.040</td>
</tr>
<tr>
<td>(ϵ_2, ϵ_3)</td>
<td>-0.671</td>
<td>-0.287</td>
<td>-0.407</td>
</tr>
<tr>
<td>B. Non-recession period</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ϵ_1, ϵ_2)</td>
<td>-0.833</td>
<td>-0.624</td>
<td>-0.842</td>
</tr>
<tr>
<td>(ϵ_1, ϵ_3)</td>
<td>0.087</td>
<td>-0.168</td>
<td>-0.077</td>
</tr>
<tr>
<td>(ϵ_2, ϵ_3)</td>
<td>-0.624</td>
<td>-0.209</td>
<td>-0.310</td>
</tr>
<tr>
<td>C. Recession period</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ϵ_1, ϵ_2)</td>
<td>-0.197</td>
<td>-0.268</td>
<td>-0.277</td>
</tr>
<tr>
<td>(ϵ_1, ϵ_3)</td>
<td>-0.524</td>
<td>-0.489</td>
<td>-0.394</td>
</tr>
<tr>
<td>(ϵ_2, ϵ_3)</td>
<td>-0.732</td>
<td>-0.243</td>
<td>0.533</td>
</tr>
</tbody>
</table>

Note: Sample period, monthly 2006:7-2020:8 ($T = 170$).
Figure 6: Scatter plot of ϵ_1 and ϵ_2

Figure 7: Scatter plot of ϵ_1 and ϵ_3

Figure 8: Scatter plot of ϵ_2 and ϵ_3
Table 5. Income and price elasticities at the mean

Assets
$x_1 =$ transaction balances
$x_2 =$ OCDs at commercial banks and thrift institutions
$x_3 =$ credit card transaction services

A. Mixture copula Minflex Laurent demand system

<table>
<thead>
<tr>
<th>Assets i</th>
<th>Income elasticities</th>
<th>Price elasticities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>η_{iy}</td>
<td>η_1</td>
</tr>
<tr>
<td>x_1</td>
<td>1.201 (0.000)</td>
<td>-0.772 (0.000)</td>
</tr>
<tr>
<td>x_2</td>
<td>0.645 (0.000)</td>
<td>-0.079 (0.000)</td>
</tr>
<tr>
<td>x_3</td>
<td>0.938 (0.000)</td>
<td>-0.257 (0.000)</td>
</tr>
</tbody>
</table>

B. Minflex Laurent demand system under the joint normality assumption

<table>
<thead>
<tr>
<th>Assets i</th>
<th>Income elasticities</th>
<th>Price elasticities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>η_{iy}</td>
<td>η_1</td>
</tr>
<tr>
<td>x_1</td>
<td>1.181 (0.000)</td>
<td>-0.797 (0.000)</td>
</tr>
<tr>
<td>x_2</td>
<td>0.646 (0.000)</td>
<td>-0.080 (0.000)</td>
</tr>
<tr>
<td>x_3</td>
<td>0.866 (0.000)</td>
<td>-0.211 (0.000)</td>
</tr>
</tbody>
</table>

Note: Sample period, monthly data 2006:7-2020:8 ($T = 170$). Mean of the elasticities is reported in the table. Numbers in parentheses are p-values.
Table 6. Elasticities of substitution at the mean

Assets
- \(x_1 \) = transaction balances
- \(x_2 \) = OCDs at commercial banks and thrift institutions
- \(x_3 \) = credit card transaction services

A. Mixture copula Minflex Laurent demand system

<table>
<thead>
<tr>
<th>Assets (i)</th>
<th>Allen elasticities</th>
<th>Morishima elasticities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\sigma_{11}^i)</td>
<td>(\sigma_{12}^i)</td>
</tr>
<tr>
<td>(x_1)</td>
<td>-0.342 (0.000)</td>
<td>0.286 (0.000)</td>
</tr>
<tr>
<td>(x_2)</td>
<td>-0.559 (0.000)</td>
<td>-0.061 (0.000)</td>
</tr>
<tr>
<td>(x_3)</td>
<td>-0.867 (0.000)</td>
<td>0.370 (0.000)</td>
</tr>
</tbody>
</table>

B. Minflex Laurent demand system based on joint normality assumption

<table>
<thead>
<tr>
<th>Assets (i)</th>
<th>Allen elasticities</th>
<th>Morishima elasticities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\sigma_{11}^i)</td>
<td>(\sigma_{12}^i)</td>
</tr>
<tr>
<td>(x_1)</td>
<td>-0.197 (0.000)</td>
<td>0.207 (0.000)</td>
</tr>
<tr>
<td>(x_2)</td>
<td>-0.529 (0.000)</td>
<td>-0.088 (0.000)</td>
</tr>
<tr>
<td>(x_3)</td>
<td>-1.028 (0.000)</td>
<td>0.310 (0.000)</td>
</tr>
</tbody>
</table>

Note: Sample period, monthly data 2006:7-2020:8 (\(T = 170 \)). Mean of the elasticities is reported in the table. Numbers in parentheses are p-values.
Figure 9: Morishima elasticities of substitution between transaction balances and OCDs
Figure 10: Morishima elasticities of substitution between transaction balances and credit card services
Figure 11: Morishima elasticities of substitution between OCDs and credit card transaction services